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A free material surface which supports surface diffusion becomes unstable when put under external nonhy-
drostatic stress. Since the chemical potential on a stressed surface is larger inside an indentation, small shape
fluctuations develop because material preferentially diffuses out of indentations. When the bulk of the material
is purely elastic one expects this instability to run into a finite-time cusp singularity. It is shown here that this
singularity is cured by plastic effects in the material, turning the singular solution to a regular crack.
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We address the problem of an amorphous material with a
free surface on which the material can diffuse such that the
surface normal velocity is proportional to �2� /�b2, where �
is the local chemical potential and b is the parametrization of
the interface. When the material itself is purely elastic, this
phenomenon leads to an instability which was termed “ther-
mal grooving” by Mullins �1�, who discovered it. The phe-
nomenon of grooving is equally present in crystals, where it
provides an annoying mechanism for the failure of growing
crystals �2,3�, as it does in a range of amorphous solids that
concern us here. Mullins considered the linear instability tak-
ing into account only the curvature dependence of the chemi-
cal potential. In fact, the chemical potential along the inter-
face is strongly dependent on the elastic energy; linear
stability analysis taking both effects into account �4� reveals
that the surface is stable for short wavelengths but unstable
for longer ones, with a usual “fastest growing mode” whose
wavelength depends on the material parameters. The late
stage of development of this instability was initially studied
by a handful of researchers, namely Asaro and Tiller �5� and
Grinfeld �6�, and followed by many others �4,7–9�. The re-
sult is that the instability runs into a finite-time singularity,
with the growing indentation forming a cusp. Clearly, this
often explored �7,10,11� mathematical phenomenon cannot
be physical, and its discovery leaves open the question of the
physical mechanism that may cure the singularity.

The question of what might cure the finite-time singular-
ity in the Asaro-Tiller-Grinfeld �ATG� instability remained
dormant until recently when Brener and Spatschek proposed
that inertial effect in the velocity of the moving boundary
may tame the singularity �8�. These authors pointed out that
without inertial effects the velocity of the tip v appears in
one dimensionless combintation, i.e., vr0

3 /D, where r0 is the
radius of the tip and D the diffusion coefficient �of dimen-
sion length4/time, and cf. Eq. �15��. Therefore there is no
mechanism to select v or r0, and as r0 decreases without
limit, v increases without limit. Once inertial effects are
taken into account the velocity appears also in the combina-
tion v /vR where vR is the Rayleigh wave speed. Thus a se-
lection of both v and r0 can happen. While clearly correct,
the present authors stress that in many cases the surface dif-
fusion is very slow, leading to small interface velocities
which do not justify the incorporation of inertial terms. We
focus here on such cases where the question of taming the
cusp singularities remains open.

Here we propose that the generic mechanism for the tam-
ing of the ATG instability may be plastic deformation in the
stressed material, especially near the putative cusp. To test
and demonstrate this proposition we will employ the recently
proposed theory of elastoplastic dynamics in amorphous sys-
tems �12�. To this theory, which is valid in the bulk of the
material, we couple the surface diffusion, allowing the
chemical potential to take its stress dependence from the
elastoplastic theory. For concreteness we choose to explore
this interesting physics on the inner surface of a hole which
is stressed at infinity in a radial fashion. The surface diffu-
sion modifies the shape of the slightly perturbed circular
hole, leading eventually to a highly nonlinear morphology.
With a sharpening interface due to the surface diffusion in-
stability, stresses in the bulk increase rapidly, exceeding at
some point in time the yield stress of the material, triggering
plastic flows which are dissipated by the exertion of plastic
work �12–14�. It is interesting to observe the coupling of
both processes, namely surface diffusion and plasticity, as
they become competitive and of opposite influence on the
morphology, to a point where the finite time singularity is
removed. In addition to shedding light on the late stage of
the ATG instability we find that the elastoplastic theory em-
ployed here, which is sensitive to the plastic properties of
matter, allows a natural understanding of this a priori seem-
ingly hard problem.

The model system that we consider here is an infinite
two-dimensional isotropic elastoplastic sheet with a hole in
the center whose radius is R���. For r����R��� the system is
void, whereas the elastoplastic material occupies the region
r����R���. The boundary is traction free, meaning that on
the boundary �ijnj =0, where � is the stress tensor and n is
the unit normal vector. The equations of acceleration and
continuity are exact, reading

�
Dv

Dt
= � · � , �1�

D�

Dt
= − � � · v . �2�

Here the full material derivative D is defined for an arbitrary
tensor A as
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DA

Dt
= �tA + v · �A + A · � − � · A , �3�

where � is the spin tensor 	ij �
1
2 �
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�xj
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�v j

�xi
�. Reading Eq. �1�
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Here s and 
 are defined via the transformations

�rr = srr − p, ��� = s�� − p, �r� = 
 ,

srr = − s�� = − s . �6�

Note that our velocities are sufficiently small to allow ne-
glecting the nonlinear terms −v�

2 /r and vrv� /r. On the other
hand, nonlinear terms containing derivatives are retained
since the derivatives are large.

The velocity at the interface Ṙ��� reads

�R

�t
=

v�

R
��R + vr. �7�

When the surface evolves, the stresses in the bulk evolve
accordingly. A fundamental assumption of our elastoplastic
theory is that the total rate of deformation Dtot

� 1
2 ��v+ ��v�†� can be represented as a linear combination

of its elastic and plastic components �14�,

Dtot � Del + Dpl. �8�

Here the elastic contribution Del is assumed to be linearly
dependent on the stress �linear elasticity�,

Dij
el �

D�ij

Dt
, �ij = −

p�ij

2K
+

sij

2�
, �9�

where K and � are the two-dimensional bulk and shear
moduli and p and sij are the pressure and the deviatoric stress
tensor, respectively. The plastic rate of deformation, Dpl, is
determined by a set of internal fields which are discussed at

length in �12� where the elastoplastic theory is presented in
detail. For the purpose of this Brief Report it is enough to
state that the tensorial field m acts as a “back stress” due to
plastic deformations, and the scalar field  is the effective
temperature that controls the amount of configurational dis-
order in the elastoplastic materials. The constitutive relations
that were derived for these fields read

Dij
pl = e−1/C�s̃�� sij

s̃
− mij� , �10�

Dmij/Dt = 2e1/Dij
pl − ��sij,mij�mij , �11�

D/Dt = e−1/��sij,mij��� − � , �12�

��sij,mij� = sijDij
pl/e−1/, �13�

C�s̃� =
e−s̃�2 + s̃� + s̃ − 2

1 + e−6�s̃−1.5� . �14�

In these equations all the stresses were normalized by the
yield stress of the material sy, using s̃=�sijsij /2sy

2. The func-
tion C�s̃� has been chosen to make the material relatively
brittle.

To this theory we need to couple now the surface diffu-
sion, expressed in terms of the normal velocity, vn���, on the
boundary. Without the effects of elastoplasticity in the bulk
the normal velocity satisfies

vn = −
Ds�

2�

kBT

�2�

�b2 , �15�

where Ds is the surface diffusion constant, � the particle
volume, and � the number of particles per unit area. In solv-
ing the coupled problem the total normal velocity should be
computed as a sum of this contribution and the one coming
from Eqs. �4� and �5�.

The chemical potential on the boundary, ����, is associ-
ated on the one hand with the destabilizing curvature and on
the other hand with the stabilizing surface energy �3�

� = �0 − �� + E . �16�

Here �0 is the chemical potential of the unperturbed surface,
the curvature ����= �R2+2R�2−RR�� / �R2+R�2�3/2, and the
strain energy density E= 1

2�ij�ij �15�. � is the surface energy.

FIG. 1. �Color online� A typical half profile of the stressed in-
terface under the action of surface diffusion and plastiticity. To the
bare eye the effect of plasticity is not seen here, and one needs to
compare elastic and plastic solution in Figs. 2 and 3.
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FIG. 2. �Color online� The tip curvatures of the elastic solution.
This solution appears to approach a singularity at t*=5.37�10−4.
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In terms of these effects on the chemical potential one
derives the equation for the normal velocity due to surface
diffusion alone,

vn = −
Ds�

2�

kBT

�2�

�b2 	�− ������ + � �1 − �2�
2E

�ij
2 ����
 ,

�17�

where � is the Poisson ratio and E Young’s modulus. After
nondimensionalization and projecting from vn to vr, one ends
up with the following equation in terms of dimensionless
quantities �denoted with the tilde�:

ṽr = − ��

1

�R̃2 + R̃�2
���− �̃��� +

�1 − �2�
2

�̃ij
2 ���� . �18�

As noted, we need to couple Eqs. �4�, �5�, and �18� to be
solved together, such that the surface normal velocity is
made from the sum of contributions coming from the bulk
dynamics and the surface dynamics, respectively. This
should be done while keeping the traction-free boundary
conditions and the initial condition of a pure elastic solution
of a slightly perturbed circle. In practice we used the fact that
the elastic response is the fastest process in this problem.
Accordingly, we solved first at each iteration the elastic part
of the model �with Dpl=0� to find the stress fields which are
in agreement with the given interface, without taking into

account any plastic deformation. Second, elastoplastic relax-
ation was allowed to take place, until the system reached
elastoplastic equilibrium, allowing the interface to change.
Here “equilibrium” means that Dpl is smaller than 10−4.
Lastly, a step of surface diffusion was allowed to take place
using an adaptive time step such as to bound the maximal
movement of the boundary by 10−4. The last step changes the
morphology of the boundary again, necessitating a recalcu-
lation of the elastic fields around the new boundary, etc.
Since the effect on the velocity of the interface in the last two
steps is additive, these steps �being infintesimal� also could
be done simultaneously with impunity. We chose to separate
the last two steps since the plastic and surface diffusion pro-
cesses are nondimensionalized independently and have dif-
ferent normalization values of characteristic times and
stresses.

In order to realize an infinite sheet it is convenient to
transform the �r ,�� coordinate system through a conformal
transformation to a finite domain �� ,�� with �� �0,1�,

���� = R��,t�/r . �19�

In the finite space all the derivatives are redefined using the
chain rule �xi

=�xi
xk�xk

. Explicitly
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At �=0 all the derivatives vanish and on the boundary �=1
the time derivatives are estimated by linear extrapolation in
the � direction. For the sake of numerical stability small vis-
cosity terms were added to the acceleration components. The
coupled equations were solved using K=100 and �=50.
Since the speed of sound is orders of magnitude larger than
the velocity of the interface, we could safely neglect the
effects of Eq. �2�, giving up on seeing the sound waves. The
initial condition on the perturbed circle were

R�t = 0,�� = 1 + 0.01 cos 2� , �21�

the stress at infinity was chosen to be ��=0.9sy. The Poisson
ratio � in Eq. �18� is 1 /3. The surface diffusion equations
contain fourth-order derivatives, calling for spectral tech-
niques for sufficiently stable evaluation. All the other deriva-
tives were computed by finite differences.

The typical morphology of the unstable interface is shown
in Fig. 1. The elastic solution for the finite-time singularity is
well established and was reproduced in our numerics. The
curvature � in the growing cusp first grows exponentially
and rapidly switches to a faster regime that agrees with the
growth law

��t� � �t* − t�−1/2. �22�

To make this growth obvious we plotted the curvature of the
elastic solution in Fig. 2 as a function of �t*− t�−1/2 with t*
=5.37�10−4. Once plasticity is allowed to intervene, it pre-
vents the finite-time singularity by blunting the tip and by
dissipating the stress.

On the boundary, the smoothening of the interface in the
vicinity of the cusp via blunting is the “cure” of the singu-
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FIG. 3. �Color online� The tip velocity �a� and its first and sec-
ond time derivatives ��b� and �c�, respectively�. We see that the
singularity is cured and the velocity decelerates due to the plastic
effects.
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larity. The ever-increasing curvature occurring in the elastic
solution is prevented in the plastic solution by the plastic
flow induced by stress concentration. The avoidance of the
singularity is shown by the deceleration in the tip velocity,
see Figs. 3�b� and 3�c�.

It is important to stress that although the plasticity in the
bulk succeeds to cure the finite-time cusp singularity, the role
of surface diffusion is far from being negligible. Without it,
the stressed circle would remain stable to small shape fluc-
tuations, as was demonstrated recently in �16�. The surface

diffusion makes the circle unstable, and the instability results
in the growth of a groove. Without plasticity in the bulk the
solution loses its meaning at t= t*, whereas now, with plas-
ticity playing its useful role, the solutions continue to exist at
times t� t*, in a form of a lengthening groove, or crack,
whose tip is protected from cusping by the plastic effects. At
some point the crack will increase its velocity due to the
Griffith mechanism, and then the problem becomes inertial
again.
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